LTC2862I [Linear Systems]

±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; ± 60V故障保护的3V至5.5V>RS485 / RS422收发器
LTC2862I
型号: LTC2862I
厂家: Linear Systems    Linear Systems
描述:

±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers
± 60V故障保护的3V至5.5V>RS485 / RS422收发器

文件: 总24页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2862/LTC2863/  
LTC2864/LTC2865  
6ꢀ0V FaulVꢁPrlteltꢂV30VlrV5ꢃ50  
RS485/RS422VTPFnsetivtPs  
FEATURES  
DESCRIPTION  
Protected from Overvoltage Line Faults to ±±6V  
TheLTC®2862/LTC2863/LTC2864/LTC2865arelowpower,  
20Mbpsor250kbpsRS485/RS422transceiversoperating  
on 3V to 5.5V supplies that feature 60V overvoltage fault  
protectiononthedatatransmissionlinesduringallmodes  
of operation, including power-down. Low EMI slew rate  
limited data transmission is available in a logic-selectable  
250kbpsmodeintheLTC2865andin250kbpsversionsof  
the LTC2862-LTC2864. Enhanced ESD protection allows  
these parts to withstand 15kV HBM on the transceiver  
interface pins without latchup or damage.  
n
n
3V to 5.5V Supply Voltage  
n
26Mbps or Low EMI 256kbps Data Rate  
n
±ꢀ5kV ESD Interface Pinsꢁ ±8kV ꢂll Other Pins  
n
Extended Common Mode Range: ±25V  
n
Guaranteed Failsafe Receiver Operation  
n
High Input Impedance Supports 256 Nodes  
n
1.65V to 5.5V Logic Supply Pin (V ) for Flexible  
L
Digital Interface (LTC2865)  
n
n
H-Grade Option Available (–40°C to 125°C)  
Fully Balanced Differential Receiver Thresholds for  
Low Duty Cycle Distortion  
Extended 25V input common mode range and full fail-  
safe operation improve data communication reliability in  
electrically noisy environments and in the presence of  
large ground loop voltages.  
n
n
n
Current Limited Drivers and Thermal Shutdown  
Pin Compatible with LT1785 and LT1791  
Available in DFN and Leaded Packages  
PRODUCT SELECTION GUIDE  
APPLICATIONS  
PꢂRT  
MꢂX DꢂTꢂ  
RꢂTE (bps)  
NUMBER  
DUPLEX  
HALF  
HALF  
FULL  
FULL  
FULL  
FULL  
FULL  
ENꢂBLES  
YES  
V PIN  
L
n
Supervisory Control and Data Acquisition (SCADA)  
LTC2862-1  
LTC2862-2  
LTC2863-1  
LTC2863-2  
LTC2864-1  
LTC2864-2  
LTC2865  
20M  
250k  
NO  
NO  
NO  
NO  
NO  
NO  
YES  
n
Industrial Control and Instrumentation Networks  
YES  
n
Automotive and Transportation Electronics  
NO  
20M  
n
Building Automation, Security Systems and HVAC  
Medical Equipment  
Lighting and Sound System Control  
NO  
250k  
n
YES  
20M  
n
YES  
250k  
L, LT, LTC, LTM, Linear Technology the Linear logo and μModule are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
YES  
20M/250k  
LTC28±5 Receiving ꢀ6Mbps ±266mV Differential  
Signal with ꢀMHz ±25V Common Mode Sweep  
TYPICAL APPLICATION  
RS485 Link With Large Ground Loop Voltage  
A,B  
LTC2862  
LTC2862  
A,B  
50V/DIV  
VCC1  
VCC2  
RO1  
RE1  
DE1  
R
R
RO2  
RE2  
DE2  
A-B  
A-B  
0.5V/DIV  
R
R
t
t
DI1  
D
D
DI2  
RO  
RO  
V GROUND LOOP  
≤25V  
5V/DIV  
2862345 TA01a  
GND1  
GND2  
2862345 TA01b  
100ns/DIV  
2862345f  
1
LTC2862/LTC2863/  
LTC2864/LTC2865  
ABSOLUTE MAXIMUM RATINGS  
(Note ꢀ)  
Supply Voltages  
Receiver Output (RO)  
V ..............................................................–0.3 to 6V  
(LTC2865) ..................................0.3V to (V + 0.3V)  
CC  
L
V ................................................................–0.3 to 6V  
L
Operating Ambient Temperature Range (Note 4)  
Logic Input Voltages (RE, DE, DI, SLO) ..........–0.3 to 6V  
Interface I/O: A, B, Y, Z.............................. –60V to +60V  
Receiver Output (RO)  
LTC286xC................................................. 0°C to 70°C  
LTC286xI.............................................. –40°C to 85°C  
LTC286xH .......................................... –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
(LTC2862-LTC2864)....................0.3V to (V +0.3V)  
CC  
PIN CONFIGURATION  
LTC2862-1, LTC2862-2  
LTC2862-1, LTC2862-2  
TOP VIEW  
TOP VIEW  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
B
A
CC  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
B
A
CC  
9
GND  
GND  
S8 PACKAGE  
8-LEAD (150mil) PLASTIC SO  
DD PACKAGE  
T
= 150°C, θ = 150°C/W, θ = 39°C/W  
JMAX  
JA  
JC  
8-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 9) CONNECT TO PCB GND  
T
= 150°C, θ = 43°C/W, θ = 3°C/W  
JMAX  
JA  
JC  
LTC2863-1, LTC2863-2  
LTC2863-1, LTC2863-2  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
8
A
B
Z
Y
CC  
V
1
2
3
4
8
7
6
5
A
B
Z
Y
CC  
RO  
DI  
7
6
5
RO  
DI  
9
GND  
GND  
S8 PACKAGE  
8-LEAD (150mil) PLASTIC SO  
DD PACKAGE  
T
= 150°C, θ = 150°C/W, θ = 39°C/W  
JMAX  
JA  
JC  
8-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 9) CONNECT TO PCB GND  
T
= 150°C, θ = 43°C/W, θ = 3°C/W  
JMAX  
JA  
JC  
LTC2864-1, LTC2864-2  
LTC2864-1, LTC2864-2  
TOP VIEW  
TOP VIEW  
NC  
1
2
3
4
5
6
7
14  
V
CC  
RO  
1
2
3
4
5
10  
V
A
B
Z
Y
CC  
RO  
RE  
13  
12  
11  
10  
9
NC  
A
RE  
DE  
9
8
7
6
11  
DI  
DE  
B
GND  
DI  
Z
GND  
GND  
Y
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
8
NC  
EXPOSED PAD (PIN 11) CONNECT TO PCB GND  
T
= 150°C, θ = 43°C/W, θ = 3°C/W  
JMAX  
JA JC  
S PACKAGE  
14-LEAD (150mil) PLASTIC SO  
T
= 150°C, θ = 88°C/W, θ = 37°C/W  
JMAX  
JA JC  
2862345f  
2
LTC2862/LTC2863/  
LTC2864/LTC2865  
PIN CONFIGURATION  
LTC2865  
LTC2865  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
RO  
RE  
DE  
DI  
12  
11  
10  
9
8
7
V
A
B
Z
Y
CC  
RO  
RE  
DE  
DI  
1
2
3
4
5
6
12  
11  
10  
9
V
A
B
Z
Y
CC  
13  
V
13  
L
GND  
SLO  
V
8
L
MSE PACKAGE  
12-LEAD PLASTIC MSOP  
EXPOSED PAD (PIN 13) CONNECT TO PCB GND  
= 150°C, θ = 40°C/W, θ = 10°C/W  
GND  
7
SLO  
T
JMAX  
JA  
JC  
DE PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 13) CONNECT TO PCB GND  
T
= 150°C, θ = 43°C/W, θ = 4.3°C/W  
JMAX  
JA JC  
ORDER INFORMATION  
LEꢂD FREE FINISH  
LTC2862CS8-1#PBF  
LTC2862IS8-1#PBF  
LTC2862HS8-1#PBF  
LTC2862CS8-2#PBF  
LTC2862IS8-2#PBF  
LTC2862HS8-2#PBF  
LTC2862CDD-1#PBF  
LTC2862IDD-1#PBF  
LTC2862HDD-1#PBF  
LTC2862CDD-2#PBF  
LTC2862IDD-2#PBF  
LTC2862HDD-2#PBF  
LTC2863CS8-1#PBF  
LTC2863IS8-1#PBF  
LTC2863HS8-1#PBF  
LTC2863CS8-2#PBF  
LTC2863IS8-2#PBF  
LTC2863HS8-2#PBF  
LTC2863CDD-1#PBF  
LTC2863IDD-1#PBF  
LTC2863HDD-1#PBF  
LTC2863CDD-2#PBF  
LTC2863IDD-2#PBF  
LTC2863HDD-2#PBF  
TꢂPE ꢂND REEL  
PꢂRT MꢂRKING*  
28621  
28621  
28621  
28622  
28622  
28622  
LFXK  
PꢂCKꢂGE DESCRIPTION  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
TEMPERTURE RꢂNGE  
0°C to 70°C  
LTC2862CS8-1#TRPBF  
LTC2862IS8-1#TRPBF  
LTC2862HS8-1#TRPBF  
LTC2862CS8-2#TRPBF  
LTC2862IS8-2#TRPBF  
LTC2862HS8-2#TRPBF  
LTC2862CDD-1#TRPBF  
LTC2862IDD-1#TRPBF  
LTC2862HDD-1#TRPBF  
LTC2862CDD-2#TRPBF  
LTC2862IDD-2#TRPBF  
LTC2862HDD-2#TRPBF  
LTC2863CS8-1#TRPBF  
LTC2863IS8-1#TRPBF  
LTC2863HS8-1#TRPBF  
LTC2863CS8-2#TRPBF  
LTC2863IS8-2#TRPBF  
LTC2863HS8-2#TRPBF  
LTC2863CDD-1#TRPBF  
LTC2863IDD-1#TRPBF  
LTC2863HDD-1#TRPBF  
LTC2863CDD-2#TRPBF  
LTC2863IDD-2#TRPBF  
LTC2863HDD-2#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (150mil) Plastic SO  
LFXK  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXK  
LFXM  
LFXM  
LFXM  
28631  
28631  
28631  
28632  
28632  
28632  
LFXN  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
8-Lead (150mil) Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
8-Lead (150mil) Plastic SO  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
LFXN  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXN  
LFXP  
LFXP  
–40°C to 85°C  
–40°C to 125°C  
LFXP  
2862345f  
3
LTC2862/LTC2863/  
LTC2864/LTC2865  
ORDER INFORMATION  
LEꢂD FREE FINISH  
LTC2864CS-1#PBF  
LTC2864IS-1#PBF  
LTC2864HS-1#PBF  
LTC2864CS-2#PBF  
LTC2864IS-2#PBF  
LTC2864HS-2#PBF  
LTC2864CDD-1#PBF  
LTC2864IDD-1#PBF  
LTC2864HDD-1#PBF  
LTC2864CDD-2#PBF  
LTC2864IDD-2#PBF  
LTC2864HDD-2#PBF  
LTC2865CMSE#PBF  
LTC2865IMSE#PBF  
LTC2865HMSE#PBF  
LTC2865CDE#PBF  
LTC2865IDE#PBF  
TꢂPE ꢂND REEL  
PꢂRT MꢂRKING*  
LTC2864S-1  
LTC2864S-1  
LTC2864S-1  
LTC2864S-2  
LTC2864S-2  
LTC2864S-2  
LFXQ  
PꢂCKꢂGE DESCRIPTION  
TEMPERTURE RꢂNGE  
0°C to 70°C  
LTC2864CS-1#TRPBF  
LTC2864IS-1#TRPBF  
LTC2864HS-1#TRPBF  
LTC2864CS-2#TRPBF  
LTC2864IS-2#TRPBF  
LTC2864HS-2#TRPBF  
LTC2864CDD-1#TRPBF  
LTC2864IDD-1#TRPBF  
LTC2864HDD-1#TRPBF  
LTC2864CDD-2#TRPBF  
LTC2864IDD-2#TRPBF  
LTC2864HDD-2#TRPBF  
LTC2865CMSE#TRPBF  
LTC2865IMSE#TRPBF  
LTC2865HMSE#TRPBF  
LTC2865CDE#TRPBF  
LTC2865IDE#TRPBF  
LTC2865HDE#TRPBF  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
12-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXQ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXQ  
LFXR  
LFXR  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXR  
2865  
2865  
12-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
2865  
12-Lead Plastic MSOP  
LTXM  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
LTXM  
–40°C to 85°C  
–40°C to 125°C  
LTC2865HDE#PBF  
LTXM  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature rangeꢁ otherwise specifications are at T= 25°C. VCC = VL = 3.3V unless otherwise noted. (Note 2)  
SYMBOL  
Supplies  
PꢂRꢂMETER  
CONDITIONS  
MIN  
TYP  
MꢂX  
UNITS  
l
l
l
V
V
Primary Power Supply  
3
5.5  
V
V
CC  
L
Logic Interface Power Supply  
LTC2865 Only  
1.65  
V
CC  
I
Supply Current in Shutdown Mode  
(C-, I-Grade) (N/A LTC2863)  
DE = 0V, RE = V = V  
0
0
5
μA  
CCS  
CC  
L
L
l
l
Supply Current in Shutdown Mode  
(H-Grade) (N/A LTC2863)  
DE = 0V, RE = V = V  
15  
μA  
μA  
CC  
I
I
Supply Current with Both Driver and  
Receiver Enabled (LTC2862-1, LTC2863-1,  
LTC2864-1, LTC2865 with SLO High)  
No Load, DE = V = V , RE = 0V  
900  
1300  
CCTR  
CC  
L
l
Supply Current with Both Driver and  
Receiver Enabled (LTC2862-2, LTC2863-2,  
LTC2864-2, LTC2865 with SLO Low)  
No Load, DE = V = V , RE = 0V  
3.3  
8
mA  
CCTRS  
CC  
L
2862345f  
4
LTC2862/LTC2863/  
LTC2864/LTC2865  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature rangeꢁ otherwise specifications are at T= 25°C. VCC = VL = 3.3V unless otherwise noted. (Note 2)  
SYMBOL  
Driver  
PꢂRꢂMETER  
CONDITIONS  
MIN  
TYP  
MꢂX  
UNITS  
l
l
l
l
|V  
|
Differential Driver Output Voltage  
R = ∞ (Figure 1)  
1.5  
1.5  
2
V
V
V
V
V
OD  
CC  
R = 27Ω (Figure 1)  
R = 50Ω (Figure 1)  
5
V
CC  
Δ|V  
|
Change in Magnitude of Driver Differential R = 27Ω or 50Ω (Figure 1)  
Output Voltage  
0.2  
OD  
l
l
V
Driver Common-Mode Output Voltage  
R = 27Ω or 50Ω (Figure 1)  
R = 27Ω or 50Ω (Figure 1)  
3
V
V
OC  
Δ|V  
|
Change in Magnitude of Driver  
Common-Mode Output Voltage  
0.2  
OC  
l
l
I
I
Maximum Driver Short-Circuit Current  
–60V ≤ (Y or Z) ≤ 60V (Figure 2)  
150  
250  
30  
mA  
μA  
OSD  
OZD  
Driver Three-State (High Impedance)  
Output Current on Y and Z  
DE = 0V, V = 0V or 3.3V, V = 25V, 25V  
CC O  
Receiver  
l
l
l
l
I
Receiver Input Current (A,B)  
V
CC  
V
CC  
V
CC  
V
CC  
= 0V or 3.3V, V = 12V (Figure 3)  
125  
143  
μA  
μA  
μA  
μA  
IN  
IN  
(C-, I-Grade LTC2863, LTC2864, LTC2865)  
= 0V or 3.3V, V = 7V (Figure 3)  
–100  
–100  
IN  
Receiver Input Current (A,B)  
(H-Grade LTC2863, LTC2864, LTC2865;  
C-, I-, H-Grade LTC2862)  
= 0V or 3.3V, V = 12V (Figure 3)  
IN  
= 0V or 3.3V, V = 7V (Figure 3)  
IN  
R
Receiver Input Resistance  
0 ≤ V ≤ 5.5V, V = 25V or 25V  
112  
kΩ  
V
IN  
CC  
IN  
(Figure 3)  
l
l
V
V
Receiver Common Mode Input Voltage  
(A + B)/2  
–25  
25  
CM  
TH  
Differential Input Signal Threshold  
Voltage (A – B)  
–25V ≤ V ≤ 25V  
200  
mV  
CM  
ΔV  
Differential Input Signal Hysteresis  
V
= 0V  
150  
–50  
25  
mV  
mV  
mV  
V
TH  
CM  
l
Differential Input Failsafe Threshold Voltage –25V ≤ V ≤ 25V  
–200  
0
CM  
Differential Input Failsafe Hysteresis  
Receiver Output High Voltage  
V
CM  
= 0V  
V
V
I(RO) = –3mA (Sourcing)  
l
l
l
V
–0.4V  
CC  
OH  
V ≥ 2.25V, I(RO) = –3mA (LTC2865)  
V –0.4V  
L
L
V < 2.25V, I(RO) = –2mA (LTC2865)  
V –0.4V  
L
L
l
l
Receiver Output Low Voltage  
I(RO) = 3mA (Sinking)  
0.4  
5
V
OL  
I
Receiver Three-State (High Impedance)  
Output Current on RO  
RE = High, RO = 0V or V  
RO = 0V or V (LTC2865)  
μA  
OZR  
CC  
L
l
I
Receiver Short-Circuit Current  
RE = Low, RO = 0V or V  
20  
mA  
OSR  
CC  
RO = 0V or V (LTC2865)  
L
Logic  
(LTC28±2ꢁ LTC28±3ꢁ LTC28±4)  
Input Threshold Voltage (DE, DI, RE)  
Logic Input Current (DE, DI, RE)  
(LTC28±5)  
l
l
V
TH  
3.0 ≤ V ≤ 5.5V  
0.33 • V  
0.67 • V  
5
V
CC  
CC  
CC  
I
0 ≤ V ≤ V  
CC  
0
0
μA  
INL  
IN  
Logic  
l
l
V
TH  
Input Threshold Voltage (DE, DI, RE, SLO) 1.65V ≤ V ≤ 5.5V  
0.33 • V  
0.67 • V  
5
V
L
L
L
I
Logic Input Current (DE, DI, RE, SLO)  
0 ≤ V ≤ V  
L
μA  
INL  
IN  
2862345f  
5
LTC2862/LTC2863/  
LTC2864/LTC2865  
SWITCHING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature rangeꢁ otherwise specifications are at T= 25°C. VCC = VL = 3.3V unless otherwise noted. (Note 2)  
SYMBOL  
PꢂRꢂMETER  
CONDITIONS  
MIN  
TYP  
MꢂX  
UNITS  
Driver – High Speed (LTC28±2-ꢀꢁ LTC28±3-ꢀꢁ LTC28±4-ꢀꢁ LTC28±5 with SLO High)  
l
l
l
f
t
Maximum Data Rate  
(Note 3)  
20  
Mbps  
ns  
MAX  
, t  
Driver Input to Output  
R
DIFF  
DIFF  
= 54Ω, C = 100pF (Figure 4)  
25  
2
50  
9
PLHD PHLD  
L
Δt  
Driver Input to Output Difference  
R
= 54Ω, C = 100pF (Figure 4)  
ns  
PD  
L
|t  
– t  
|
PHLD  
PLHD  
l
l
l
t
t
Driver Output Y to Output Z  
Driver Rise or Fall Time  
R
R
= 54Ω, C = 100pF (Figure 4)  
10  
15  
ns  
ns  
ns  
SKEWD  
DIFF  
L
, t  
RD FD  
= 54Ω, C = 100pF (Figure 4)  
4
DIFF  
L
t
t
, t  
, t  
,
Driver Enable or Disable Time  
R = 500Ω, C = 50pF, RE = 0V  
180  
ZLD ZHD  
LZD HZD  
L
L
(Figure 5)  
l
l
t
, t  
Driver Enable from Shutdown  
Time to Shutdown  
R =500Ω, C = 50pF, RE = High  
9
μs  
ns  
ZHSD ZLSD  
SHDND  
L
L
(Figure 5)  
t
R = 500Ω, C = 50pF, RE = High  
180  
L
L
(Figure 5)  
Driver – Slew Rate Limited ( LTC28±2-2ꢁ LTC28±3-2ꢁ LTC28±4-2ꢁ LTC28±5 with SLO Low)  
l
l
l
f
t
Maximum Data Rate  
(Note 3)  
250  
500  
kbps  
ns  
MAX  
, t  
Driver Input to Output  
R
DIFF  
R
DIFF  
= 54Ω, C = 100pF (Figure 4)  
850  
50  
1500  
500  
PLHD PHLD  
L
Δt  
Driver Input to Output Difference  
= 54Ω, C = 100pF (Figure 4)  
ns  
PD  
L
|t  
PLHD  
– t  
|
PHLD  
l
l
l
t
t
t
Driver Output Y to Output Z  
Driver Rise or Fall Time  
Driver Enable Time  
R
R
= 54Ω, C = 100pF (Figure 4)  
500  
1200  
1200  
ns  
ns  
ns  
SKEWD  
DIFF  
L
, t  
= 54Ω, C =100pF (Figure 4)  
800  
RD FD  
DIFF  
L
, t  
R = 500Ω, C = 50pF, RE = 0V  
ZLD ZHD  
L
L
(Figure 5)  
l
l
l
t
t
t
, t  
Driver Disable Time  
R = 500Ω, C = 50pF, RE = 0V  
180  
10  
ns  
μs  
ns  
LZD HZD  
L
L
(Figure 5)  
, t  
Driver Enable from Shutdown  
Time to Shutdown  
R = 500Ω, C = 50pF, RE = High  
ZHSD ZLSD  
L
L
(Figure 5)  
R =500Ω, C = 50pF, RE = High  
180  
SHDND  
L
L
(Figure 5)  
Receiver  
l
t
t
t
, t  
Receiver Input to Output  
Differential Receiver Skew  
C
R
= 15pF, V = 1.5V, |V | = 1.5V,  
50  
2
65  
9
ns  
ns  
PLHR PHLR  
L
CM  
AB  
t and t < 4ns (Figure 6)  
F
C = 15pF (Figure 6)  
L
SKEWR  
|t  
– t  
|
PHLR  
PLHR  
l
l
, t  
Receiver Output Rise or Fall Time  
Receiver Enable/Disable Time  
C = 15pF (Figure 6)  
L
3
12.5  
40  
ns  
ns  
RR FR  
t
t
, t  
, t  
,
R = 1k, C = 15pF, DE = High (Figure 7)  
L L  
ZLR ZHR  
LZR HZR  
l
l
t
, t  
Receiver Enable from Shutdown  
Time to Shutdown  
R = 1k, C = 15pF, DE = 0V, (Figure 7)  
9
μs  
ns  
ZHSR ZLSR  
SHDNR  
L
L
t
R = 1k, C = 15pF, DE = 0V, (Figure 7)  
100  
L
L
Note ꢀ. Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2. All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 3. Maximum data rate is guaranteed by other measured parameters  
and is not tested directly.  
Note 4. This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 150ºC when overtemperature protection is active.  
Continuous operation above the specified maximum operating temperature  
may result in device degradation or failure.  
2862345f  
6
LTC2862/LTC2863/  
LTC2864/LTC2865  
T= 25°Cꢁ VCC = VL = 3.3Vꢁ unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs VCC  
Supply Current vs Temperature  
Supply Current vs Data Rate  
10000  
1000  
100  
10  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
16  
12  
8
250  
200  
150  
100  
50  
I
R
L
= 54Ω  
DIFF  
CCTRS  
C
= 100pF  
I
CCTRS  
I
CCTR  
SLEW LIMITED  
NON SLEW LIMITED  
4
1
I
CCTR  
I
CCS  
0
0
0.1  
3.0  
4.0  
V
4.5  
(V)  
5.0  
5.5  
3.5  
30  
35  
45  
50  
55  
60  
40  
–50  
0
25 50 75 100 125 150  
–25  
SUPPLY CURRENT (mA)  
CC  
TEMPERATURE (°C)  
2862345 G01  
2862345 G02  
2862345 G03  
Driver Output Short-Circuit  
Current vs Voltage  
Driver Propagation Delay vs  
Temperature  
Driver Skew vs Temperature  
200  
150  
100  
50  
1.5  
1.0  
120  
35  
1000  
900  
R
L
= 54Ω  
R
L
= 54Ω  
DIFF  
= 100pF  
DIFF  
C
C
= 100pF  
100  
80  
OUTPUT LOW  
NON SLEW LIMITED  
SLEW LIMITED  
0.5  
30  
25  
20  
0.0  
60  
0
–50  
–100  
–150  
–200  
40  
800  
–0.5  
–1.0  
SLEW LIMITED  
OUTPUT HIGH  
20  
NON SLEW LIMITED  
–1.5  
0
700  
–60  
–20  
0
20  
40  
60  
–40  
–50  
50  
100  
150  
–50  
50  
100  
150  
0
0
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2862345 G06  
2862345 G04  
2862345 G05  
Driver Output Low/High Voltage  
vs Output Current  
Driver Differential Output  
Voltage vs Temperature  
3.5  
3.0  
2.5  
R
DIFF  
= 100Ω  
V
OH  
2.3  
2.1  
1.9  
1.7  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
R
DIFF  
= 54Ω  
V
OL  
1.5  
0
20  
30  
40  
50  
–50  
50  
100  
150  
10  
0
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
2862345 G07  
2862345 G08  
2862345f  
7
LTC2862/LTC2863/  
LTC2864/LTC2865  
T= 25°Cꢁ VCC = VL = 3.3Vꢁ unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Receiver Output Voltage vs  
Receiver Propagation Delay  
vs Temperature  
Output Current (Source and Sink)  
Receiver Skew vs Temperature  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
58  
56  
54  
52  
50  
48  
46  
–1.6  
V
C
= 1.5V  
V = 1.5V  
AB  
C = 15pF  
L
V
= 5.5V  
AB  
= 15pF  
L
L
–1.8  
–2.0  
–2.2  
–2.4  
–2.6  
V
V
= 3.3V  
L
= 2.25V  
L
V
= 1.65V  
4.0  
L
V
L
= 1.65V TO 5.5V  
2.0  
0.0  
6.0  
8.0  
–50  
50  
100  
150  
–50  
50  
100  
150  
0
0
OUTPUT CURRENT (ABSOLUTE VALUE) (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2862345 G09  
2862345 G10  
2862345 G11  
2862345f  
8
LTC2862/LTC2863/  
LTC2864/LTC2865  
PIN FUNCTIONS  
PIN NUMBER  
PIN  
NꢂME  
LTC28±4  
(DFN)  
LTC28±4  
(SO)  
DESCRIPTION  
LTC28±2  
LTC28±3  
LTC28±5  
Receiver Output. If the receiver output is enabled (RE low) and A–B >  
200mV, then RO will be high. If A–B < –200mV, then RO will be low. If the  
receiver inputs are open, shorted, or terminated without a signal, RO will  
be high.  
RO  
1
2
1
2
1
Receiver Enable. A low input enables the receiver. A high input forces the  
receiver output into a high impedance state. If RE is high with DE low,  
the part will enter a low power shutdown state.  
RE  
2
3
-
-
2
3
3
4
2
3
Driver Enable. A high input on DE enables the driver. A low input will  
force the driver outputs into a high impedance state. If DE is low with RE  
high, the part will enter a low power shutdown state.  
DE  
Driver Input. If the driver outputs are enabled (DE high), then a low on  
DI forces the driver noninverting output Y low and inverting output Z  
high. A high on DI, with the driver outputs enabled, forces the driver  
noninverting output Y high and inverting output Z low.  
DI  
4
-
3
-
4
-
5
-
4
5
Logic Supply: 1.65V ≤ V ≤ V . Bypass with 0.1μF ceramic capacitor.  
L
CC  
V
L
Powers RO, RE, DE, DI and SLO interfaces on LTC2865 only.  
GND  
5
9
4
9
5
6, 7  
-
6
Ground.  
Exposed Pad  
11  
13  
Connect the exposed pads on the DFN and MSOP packages to GND  
Slow Mode Enable. A low input switches the transmitter to the slew rate  
limited 250kbps max data rate mode. A high input supports 20Mbps.  
SLO  
Y
-
-
-
-
-
7
8
Noninverting Driver Output for LTC2863, LTC2864, LTC2865.  
High-impedance when driver disabled or unpowered.  
5
6
7
6
7
8
9
Inverting Driver Output for LTC2863, LTC2864, LTC2865.  
High-impedance when driver disabled or unpowered.  
Z
-
10  
11  
9
Inverting Receiver Input (and Inverting Driver Output for LTC2862).  
Impedance is > 96kΩ in receive mode or unpowered.  
B
7
10  
Noninverting Receiver Input (and Noninverting Driver Output for  
LTC2862). Impedance is > 96kΩ in receive mode or unpowered.  
A
6
8
8
1
9
12  
14  
11  
12  
V
CC  
10  
Power Supply. 3V < V < 5.5V. Bypass with 0.1μF ceramic capacitor to  
CC  
GND.  
NC  
1, 8, 13  
Unconnected Pins. Float or connect to GND.  
FUNCTION TABLES  
LTC28±2  
LTC28±4ꢁ LTC28±5:  
LOGIC INPUTS  
MODE  
ꢂꢁ B  
RO  
LOGIC INPUTS  
MODE  
ꢂꢁ B  
Yꢁ Z  
RO  
DE  
0
RE  
0
DE  
0
RE  
0
Receive  
Shutdown  
Transceive  
Transmit  
R
R
Active  
High-Z  
Active  
High-Z  
Receive  
Shutdown  
Transceive  
Transmit  
R
R
R
R
High-Z  
High-Z  
Active  
Active  
Active  
High-Z  
Active  
High-Z  
IN  
IN  
IN  
IN  
IN  
IN  
0
1
0
1
1
0
Active  
Active  
1
0
1
1
1
1
2862345f  
9
LTC2862/LTC2863/  
LTC2864/LTC2865  
BLOCK DIAGRAMS  
LTC28±2  
LTC28±3  
V
CC  
V
CC  
A*  
B*  
RO  
RO  
RECEIVER  
RECEIVER  
A*  
B*  
RE  
MODE CONTROL  
DE  
LOGIC  
Z*  
Y*  
DI  
DRIVER  
DI  
DRIVER  
GND  
2862345 BDb  
*15kV ESD  
GND  
2862345 BDa  
*15kV ESD  
LTC28±4  
LTC28±5  
V
V
CC  
CC  
VL  
A*  
B*  
A*  
RO  
RO  
RECEIVER  
RECEIVER  
B*  
RE  
RE  
MODE CONTROL  
LOGIC  
MODE CONTROL  
LOGIC  
DE  
DE  
Z*  
Y*  
Z*  
Y*  
DI  
DI  
DRIVER  
DRIVER  
SLO  
GND  
GND  
2862345 BDc  
2862345 BDd  
*15kV ESD  
*15kV ESD  
2862345f  
10  
LTC2862/LTC2863/  
LTC2864/LTC2865  
TEST CIRCUITS  
Y**  
Y**  
Z**  
R
R
I
OSD  
+
GND  
OR  
CC  
GND  
V
DI  
DRIVER  
DI  
DRIVER  
OD  
OR  
V
*
V
*
CC  
+
+
–60V TO 60V  
V
OC  
Z**  
2862345 FO2  
2862345 FO1  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
L
CC  
**LTC2862 ONLY: SUBSTITUTE A, B FOR Y, Z  
**LTC2862 ONLY: SUBSTITUTE A, B FOR Y, Z  
Figure ꢀ. Driver DC Characteristics  
Figure 2. Driver Output Short-Circuit Current  
I
IN  
A OR B  
B OR A  
RECEIVER  
+
V
IN  
2862345 FO3  
V
I
IN  
IN  
R
IN  
=
Figure 3. Receiver Input Current and Input Resistance  
V
*
CC  
Y**  
Z**  
DI  
t
t
PHLD  
PLHD  
C
C
L
0V  
DI  
t
SKEWD  
R
DIFF  
DRIVER  
1/2 V  
O
V
Y, Z  
O
L
2862345 FO4  
90%  
90%  
(Y–Z)  
0
0
10%  
10%  
t
RD  
t
FD  
**LTC2862 ONLY: SUBSTITUTE A, B FOR Y, Z  
2862345 F04b  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
Figure 4. Driver Timing Measurement  
2862345f  
11  
LTC2862/LTC2863/  
LTC2864/LTC2865  
TEST CIRCUITS  
GND  
OR  
CC  
R
R
L
L
Y**  
V
DE  
*
CC  
1/2 V  
V
CC  
C
L
t
t
,
ZLD  
ZLSD  
0V  
V
*
CC  
t
LZD  
DI  
DRIVER  
DE  
OR  
V
CC  
GND  
1/2 V  
1/2 V  
V
Y OR Z  
Z OR Y  
CC  
O
V
CC  
0.5V  
0.5V  
V
V
OL  
OR  
Z**  
GND  
C
OH  
0V  
L
CC  
2862345 F05b  
t
t
,
t
,
HZD  
ZHD  
t
ZHSD  
SHDN  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
**LTC2862 ONLY: SUBSTITUTE A, B FOR Y, Z  
2862345 FO5  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
Figure 5. Driver Enable and Disable Timing Measurements  
t
= |t  
– t  
|
SKEWR  
PLHR PHLR  
V
AB  
V
/2  
/2  
A–B  
–V  
0
AB  
A
B
AB  
RO  
t
t
PLHR  
PHLR  
V
RECEIVER  
CM  
V
*
CC  
90%  
10%  
90%  
10%  
C
V
O
1/2 V  
*
CC  
1/2 V  
*
CC  
RO  
L
V
AB  
0
2862345 F06b  
t
t
FR  
RR  
2862345 FO6a  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
Figure ±. Receiver Propagation Delay Measurements  
V
RE  
*
CC  
CC  
t
t
,
ZLR  
ZLSR  
1/2 V *  
CC  
A
B
0V OR V  
CC  
R
0V  
L
V
CC  
RO  
t
LZR  
OR  
RECEIVER  
V
*
GND  
C
1/2 V  
1/2 V  
*
*
V
OR 0V  
V
O
RO  
L
CC  
CC  
CC  
0.5V  
0.5V  
V
OL  
RE  
DI = 0V OR V  
*
CC  
V
OH  
RO  
0V  
2862345 F07b  
2862345 FO7a  
t
t
,
t
,
HZR  
ZHR  
t
ZHSR  
SHDNR  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
Figure 7. Receiver Enable/Disable Time Measurements  
2862345f  
12  
LTC2862/LTC2863/  
LTC2864/LTC2865  
APPLICATIONS INFORMATION  
±±6V Fault Protection  
±25V Extended Common Mode Range  
To further increase the reliability of operation and extend  
functionality in environments with high common mode  
voltages due to electrical noise or local ground potential  
differences due to ground loops, the LTC2862-LTC2865  
devices feature an extended common mode operating  
range of –25V to 25V. This extended common mode range  
allows the LTC2862-LTC2865 devices to transmit and re-  
ceive under conditions that would cause data errors and  
possible device damage in competing products.  
The LTC2862-LTC2865 devices answer application needs  
for overvoltage fault-tolerant RS485/RS422 transceivers  
operatingfrom3Vto5.5Vpowersupplies.Industrialinstal-  
lations may encounter common mode voltages between  
nodes far greater than the –7V to 12V range specified by  
theRS485standards.StandardRS485transceiverscanbe  
damagedbyvoltagesabovetheirtypicalabsolutemaximum  
ratings of –8V to 12.5V. The limited overvoltage tolerance  
of standard RS485 transceivers makes implementation  
of effective external protection networks difficult without  
interferingwithproperdatanetworkperformancewithinthe  
–7Vto12VregionofRS485operation.Replacingstandard  
RS485 transceivers with the rugged LTC2862-LTC2865  
devices may eliminate field failures due to overvoltage  
faults without using costly external protection devices.  
±ꢀ5kV ESD Protection  
The LTC2862 series devices feature exceptionally robust  
ESD protection. The transceiver interface pins (A,B,Y,Z)  
feature protection to 15kV HBM with respect to GND  
without latchup or damage, during all modes of operation  
orwhileunpowered.Alltheotherpinsareprotectedto 8kV  
HBMtomakethisacomponentcapableofreliableoperation  
under severe environmental conditions.  
The 60V fault protection of the LTC2862 series is  
achievedbyusingahigh-voltageBiCMOSintegratedcircuit  
technology. The naturally high breakdown voltage of this  
technology provides protection in powered-off and high-  
impedanceconditions.Thedriveroutputsuseaprogressive  
foldbackcurrentlimitdesigntoprotectagainstovervoltage  
faults while still allowing high current output drive.  
Driver  
ThedriverprovidesfullRS485/RS422compatibility.When  
enabled, if DI is high, Y–Z is positive for the full-duplex  
devices (LTC2863-LTC2865) and A–B is positive for the  
half-duplex device (LTC2862).  
TheLTC2862seriesisprotectedfrom 60Vfaultsevenwith  
GNDopen,orV openorgrounded.Additionalprecautions  
CC  
must be taken in the case of V present and GND open.  
When the driver is disabled, both outputs are high-  
impedance. For the full-duplex devices, the leakage on  
the driver output pins is guaranteed to be less than 30μA  
over the entire common mode range of –25V to 25V. On  
the half-duplex LTC2862, the impedance is dominated by  
CC  
The LTC2862 series chip will protect itself from damage,  
but the chip ground current may flow out through the ESD  
diodes on the logic I/O pins and into associated circuitry.  
The system designer should examine the susceptibility  
of the associated circuitry to damage if the condition of a  
the receiver input resistance, R .  
IN  
GND open fault with V present is anticipated.  
CC  
Driver Overvoltage and Overcurrent Protection  
The high voltage rating of the LTC2862 series makes it  
simple to extend the overvoltage protection to higher  
levels using external protection components. Compared  
to lower voltage RS485 transceivers, external protection  
devices with higher breakdown voltages can be used, so  
as not to interfere with data transmission in the presence  
of large common mode voltages. The Typical Applications  
section shows a protection network against faults to the  
120VAC line voltage, while still maintaining the extended  
25V common mode range on the signal lines.  
The driver outputs are protected from short circuits to any  
voltage within the Absolute Maximum range of –60V to  
60V. The maximum current in a fault condition is 250mA.  
Thedriverincludesaprogressivefoldbackcurrentlimiting  
circuit that continuously reduces the driver current limit  
with increasing output fault voltage. The fault current is  
less than 15mA for fault voltages over 40V.  
2862345f  
13  
LTC2862/LTC2863/  
LTC2864/LTC2865  
APPLICATIONS INFORMATION  
All devices also feature thermal shutdown protection that  
disablesthedriverandreceiverincaseofexcessivepower  
dissipation (see Note 4).  
The LTC2862 series uses fully symmetric positive and  
negativereceiverthresholds(typically 75mV)tomaintain  
gooddutycyclesymmetryatlowsignallevels. Thefailsafe  
operationisperformedwithawindowcomparatortodeter-  
mine when the differential input voltage falls between the  
positive and negative thresholds. If this condition persists  
for more than about 3μs the failsafe condition is asserted  
and the RO pin is forced to the logic 1 state. This circuit  
provides full failsafe operation with no negative impact to  
receiver duty cycle symmetry, as shown in Figure 8. The  
input signal in Figure 8 was obtained by driving a 10Mbps  
RS485 signal through 1000 feet of cable, thereby attenu-  
ating it to a 200mV signal with slow rise and fall times.  
Good duty cycle symmetry is observed at RO despite the  
degraded input signal.  
Full Failsafe Operation  
Whentheabsolutevalueofthedifferentialvoltagebetween  
the A and B pins is greater than 200mV with the receiver  
enabled, the state of RO will reflect the polarity of (A–B).  
These parts have a failsafe feature that guarantees the  
receiver output will be in a logic 1 state (the idle state)  
when the inputs are shorted, left open, or terminated but  
not driven, for more than about 3μs. The delay allows  
normal data signals to transition through the threshold  
regionwithoutbeinginterpretedasafailsafecondition.This  
failsafe feature is guaranteed to work for inputs spanning  
the entire common mode range of –25V to 25V.  
Enhanced Receiver Noise Immunity  
Most competing devices achieve the failsafe function by a  
simple negative offset of the input threshold voltage. This  
causes the receiver to interpret a zero differential voltage  
as a logic 1 state. The disadvantage of this approach is  
the input offset can introduce duty cycle asymmetry at the  
receiver output that becomes increasingly worse with low  
input signal levels and slow input edge rates.  
Anadditionalbenefitofthefullysymmetricreceiverthresh-  
olds is enhanced receiver noise immunity. The differential  
inputsignalmustgoabovethepositivethresholdtoregister  
asalogic1andgobelowthenegativethresholdtoregister  
as a logic 0. This provides a hysteresis of 150mV (typical)  
at the receiver inputs for any valid data signal. (An invalid  
data condition such as a DC sweep of the receiver inputs  
will produce a different observed hysteresis due to the  
activation of the failsafe circuit.) Competing devices that  
employ a negative offset of the input threshold voltage  
generallyhaveamuchsmallerhysteresisandsubsequently  
have lower receiver noise immunity.  
Other competing devices use internal biasing resistors to  
create a positive bias at the receiver inputs in the absence  
of an external signal. This type of failsafe biasing is inef-  
fective if the network lines are shorted, or if the network  
is terminated but not driven by an active transmitter.  
RS485 Network Biasing  
RS485 networks are usually biased with a resistive divider  
to generate a differential voltage of ≥200mV on the data  
lines, which establishes a logic 1 state (the idle state)  
when all the transmitters on the network are disabled. The  
values of the biasing resistors are not fixed, but depend  
on the number and type of transceivers on the line and  
the number and value of terminating resistors. Therefore,  
the values of the biasing resistors must be customized to  
eachspecificnetworkinstallation,andmaychangeifnodes  
are added to or removed from the network.  
A, B  
200mV/DIV  
A–B  
200mV/DIV  
RO  
1.6V/DIV  
2862345 F08  
40ns/DIV  
Figure 8. Duty Cycle of Balanced Receiver with ±266mV  
ꢀ6Mbps Input Signal  
The internal failsafe feature of the LTC2862-LTC2865  
eliminates the need for external network biasing resistors  
2862345f  
14  
LTC2862/LTC2863/  
LTC2864/LTC2865  
APPLICATIONS INFORMATION  
provided they are used in a network of transceivers with  
similar internal failsafe features. The LTC2862-LTC2865  
transceivers will operate correctly on biased, unbiased,  
or under-biased networks.  
mode voltage, positive current of up to 80mA may flow  
from the transmitter pins back to V . If the system power  
CC  
supply or loading cannot sink this excess current, a 5.6V  
1W 1N4734 Zener diode may be placed between V and  
CC  
GND to prevent an overvoltage condition on V .  
CC  
Hi-Z State  
There are no power-up sequence restrictions on the  
LTC2865.However,correctoperationisnotguaranteedfor  
The receiver output is internally driven high (to V or V )  
CC  
L
orlow(toGND)withnoexternalpull-upneeded. Whenthe  
receiver is disabled the RO pin becomes Hi-Z with leakage  
of less than 5ꢀA for voltages within the supply range.  
V > V .  
L
CC  
High Speed Considerations  
Agroundplanelayoutwitha0.1μFbypasscapacitorplaced  
High Receiver Input Resistance  
lessthan7mmawayfromtheV pinisrecommended.The  
CC  
ThereceiverinputloadfromAorBtoGNDfortheLTC2863,  
LTC2864, and LTC2865 is less than one-eighth unit load,  
permitting a total of 256 receivers per system without  
exceeding the RS485 receiver loading specification. All  
grades of the LTC2862 and the H-grade devices of the  
LTC2863, LTC2864, and LTC2865 have an input load less  
than one-seventh unit load over the complete tempera-  
ture range of –40°C to 125°C. The increased input load  
specificationforthesedevicesisduetoincreasedjunction  
leakage at high temperature and the transmitter circuitry  
sharing the A and B pins on the LTC2862. The input load  
of the receiver is unaffected by enabling/disabling the  
receiver or by powering/unpowering the part.  
PC board traces connected to signals A/B and Z/Y should  
be symmetrical and as short as possible to maintain good  
differential signal integrity. To minimize capacitive effects,  
the differential signals should be separated by more than  
the width of a trace and should not be routed on top of  
each other if they are on different signal planes.  
Care should be taken to route outputs away from any  
sensitive inputs to reduce feedback effects that might  
cause noise, jitter, or even oscillations. For example, in  
the full-duplex devices, DI and A/B should not be routed  
near the driver or receiver outputs.  
The logic inputs have a typical hysteresis of 100mV to  
provide noise immunity. Fast edges on the outputs can  
causeglitchesinthegroundandpowersupplieswhichare  
exacerbated by capacitive loading. If a logic input is held  
Supply Current  
The unloaded static supply currents in these devices are  
low —typically 900ꢀA for non slew limited devices and  
3.3mA for slew limited devices. In applications with resis-  
tively terminated cables, the supply current is dominated  
by the driver load. For example, when using two 120ꢁ  
terminators with a differential driver output voltage of  
2V, the DC load current is 33mA, which is sourced by the  
positive voltage supply. Power supply current increases  
with toggling data due to capacitive loading and this term  
can increase significantly at high data rates. A plot of the  
supply current vs data rate is shown in the Typical Per-  
formance Characteristics of this data sheet.  
near its threshold (typically V /2 or V /2), a noise glitch  
CC  
L
from a driver transition may exceed the hysteresis levels  
on the logic and data input pins, causing an unintended  
state change. This can be avoided by maintaining normal  
logic levels on the pins and by slewing inputs faster than  
1V/ꢀs. Good supply decoupling and proper driver termi-  
nation also reduce glitches caused by driver transitions.  
RS485 Cable Length vs Data Rate  
Many factors contribute to the maximum cable length  
that can be used for RS485 or RS422 communication,  
including driver transition times, receiver threshold, duty  
cycle distortion, cable properties and data rate. A typical  
During fault conditions with a positive voltage larger than  
the supply voltage applied to the transmitter pins, or dur-  
ing transmitter operation with a high positive common  
2862345f  
15  
LTC2862/LTC2863/  
LTC2864/LTC2865  
APPLICATIONS INFORMATION  
curve of cable length versus maximum data rate is shown  
in Figure 9. Various regions of this curve reflect different  
performance limiting factors in data transmission.  
It should be emphasized that the plot in Figure 9 shows  
a typical relation between maximum data rate and cable  
length. Results with the LTC2862 series will vary, de-  
pending on cable properties such as conductor gauge,  
characteristic impedance, insulation material, and solid  
versus stranded conductors.  
At frequencies below 100kbps, the maximum cable length  
is determined by DC resistance in the cable. In this ex-  
ample, a cable longer than 4000ft will attenuate the signal  
at the far end to less than what can be reliably detected  
by the receiver.  
Low EMI 256kbps Data Rate  
The LTC2862-2, LTC2863-2, and the LTC2864-2 feature  
slew rate limited transmitters for low electromagnetic  
interference (EMI) in sensitive applications. In addition,  
the LTC2865 has a logic-selectable 250kbps transmit rate.  
The slew rate limit circuit maintains consistent control of  
transmitter slew rates across voltage and temperature to  
ensure low EMI under all operating conditions. Figure 10  
demonstrates the reduction in high frequency content  
achieved by the 250kbps mode compared to the 20Mbps  
mode.  
10k  
1k  
LOW EMI  
MODE  
SLO = GND  
100  
RS485  
STANDARD  
SPEC  
10  
20  
0
80  
60  
10k  
100k  
1M  
10M  
100M  
DATA RATE (bps)  
2862345 F09  
NON SLEW LIMITED  
–20  
–40  
40  
Figure 9. Cable Length vs Data Rate (RS485/RS422 Standard  
Shown in Vertical Solid Line)  
20  
–60  
0
–80  
–20  
–40  
–60  
For data rates above 100kbps the capacitive and inductive  
properties of the cable begin to dominate this relation-  
ship. The attenuation of the cable is frequency and length  
dependent, resulting in increased rise and fall times at  
the far end of the cable. At high data rates or long cable  
lengths, these transition times become a significant part  
of the signal bit time. Jitter and intersymbol interference  
aggravate this so that the time window for capturing valid  
data at the receiver becomes impossibly small.  
–100  
–120  
SLEW LIMITED  
10  
0
4
6
8
12  
2
FREQUENCY (MHz)  
2862345 F10  
Figure ꢀ6. High Frequency EMI Reduction of Slew Limited  
256kbps Mode Compared to Non Slew Limited 26Mbps Mode  
The 250kbps mode has the added advantage of reducing  
signal reflections in an unterminated network, and there-  
by increasing the length of a network that can be used  
without termination. Using the rule of thumb that the rise  
time of the transmitter should be greater than four times  
the one-way delay of the signal, networks of up to 140  
feet can be driven without termination.  
The boundary at 20Mbps in Figure 9 represents the guar-  
anteedmaximumoperatingrateoftheLTC2862series.The  
dashed vertical line at 10Mbps represents the specified  
maximumdatarateintheRS485standard. Thisboundary  
is not a limit, but reflects the maximum data rate that the  
specification was written for.  
2862345f  
16  
LTC2862/LTC2863/  
LTC2864/LTC2865  
TYPICAL APPLICATIONS  
Bidirectional ±±6V 26Mbps Level Shifter/Isolator  
C
LTC2863-1  
LTC2863-1  
R1  
A
B
Y
Z
V
V
CC  
CC  
DI  
RO  
R2  
DATA OUT 2  
DATA IN 2  
R1  
C
C
R1  
A
B
Y
Z
DI  
RO  
DATA IN 1  
DATA OUT 1  
R2  
R1  
C
GND  
V
V
CC  
CC  
GND  
60V  
2862345 TA03  
R1 = 100k 1%. PLACE R1 RESISTORS NEAR A AND B PINS.  
R2 = 10k  
C = 47pF, 5%, 50 WVDC. MAY BE OMITTED FOR DATA RATES ≤ 100kbps.  
Failsafe O ꢂpplication (Idle State = Logic O)  
5V  
LTC2862  
RO  
V
I1  
RO  
CC  
B
R
“A”  
“B”  
DE  
DI/  
A
DE  
DI  
D
GND  
I2  
2862345 TA04  
2862345f  
17  
LTC2862/LTC2863/  
LTC2864/LTC2865  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .ꢀ56 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
2862345f  
18  
LTC2862/LTC2863/  
LTC2864/LTC2865  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 p0.05  
3.5 p0.05  
2.10 p0.05 (2 SIDES)  
1.65 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50  
BSC  
2.38 p0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 p 0.10  
TYP  
5
8
3.00 p0.10  
(4 SIDES)  
1.65 p 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.38 p0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
2862345f  
19  
LTC2862/LTC2863/  
LTC2864/LTC2865  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S Package  
ꢀ4-Lead Plastic Small Outline (Narrow .ꢀ56 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
.045 ±.005  
(8.560 – 8.738)  
.050 BSC  
NOTE 3  
13  
12  
11  
10  
8
14  
N
9
N
1
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
7
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
2862345f  
20  
LTC2862/LTC2863/  
LTC2864/LTC2865  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
ꢀ6-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 p0.05  
3.55 p0.05  
2.15 p0.05 (2 SIDES)  
1.65 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50  
BSC  
2.38 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 p 0.10  
TYP  
6
10  
3.00 p0.10  
(4 SIDES)  
1.65 p 0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 s 45o  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 p 0.05  
0.50 BSC  
0.75 p0.05  
0.200 REF  
2.38 p0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2862345f  
21  
LTC2862/LTC2863/  
LTC2864/LTC2865  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DE/UE Package  
ꢀ2-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695 Rev D)  
0.70 p0.05  
3.30 p0.05  
3.60 p0.05  
2.20 p0.05  
1.70 p 0.05  
PACKAGE OUTLINE  
0.25 p 0.05  
0.50 BSC  
2.50 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.40 p 0.10  
4.00 p0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
3.30 p0.10  
3.00 p0.10  
(2 SIDES)  
1.70 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 s 45o  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2862345f  
22  
LTC2862/LTC2863/  
LTC2864/LTC2865  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
ꢀ2-Lead Plastic MSO ꢁ Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev F)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 t 0.102  
2.845 t 0.102  
(.112 t .004)  
0.889 t 0.127  
(.035 t .005)  
(.112 t .004)  
1
6
0.35  
REF  
1.651 t 0.102  
(.065 t .004)  
5.23  
(.206)  
MIN  
1.651 t 0.102  
(.065 t .004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
NO MEꢂSUREMENT PURPOSE  
DETAIL “B”  
12  
4.039 t 0.102  
7
0.65  
(.0256)  
BSC  
0.42 t 0.038  
(.0165 t .0015)  
(.159 t .004)  
TYP  
(NOTE 3)  
0.406 t 0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 t .003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 t 0.102  
(.118 t .004)  
(NOTE 4)  
0s – 6s TYP  
4.90 t 0.152  
(.193 t .006)  
GAUGE PLANE  
0.53 t 0.152  
(.021 t .006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 t 0.0508  
(.004 t .002)  
MSOP (MSE12) 0911 REV F  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
2862345f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion th a t the in ter c onne c t ion of i t s cir cui t s a s de s cr ibed her ein w ill not in fr inge on ex is t ing p a ten t r igh t s.  
23  
LTC2862/LTC2863/  
LTC2864/LTC2865  
TYPICAL APPLICATION  
RS485 Network with ꢀ26V ꢂC Line Fault Protection  
RAYCHEM  
POLYSWITCH  
TRF600-150  
LTC2862-2  
RX  
V
CC  
×2  
47Ω  
RO  
B
A
R 120Ω  
t
RE  
DE  
0.1μF  
250V  
DI  
TX  
2862345 TA02  
47Ω  
CARBON  
COMPOSITE  
5W  
1.5KE36CA  
RELATED PARTS  
PꢂRT NUMBER  
LT1785, LT1791  
LTC2850-53  
DESCRIPTION  
COMMENTS  
60V Tolerant, 15kV ESD, 250kbps  
60V Fault Protected RS485/RS422 Transceivers  
3.3V 20Mbps 15kV RS485 Transceivers  
Up to 256 Transceivers Per Bus  
25kV ESD (LTC2854), 15kV ESD (LTC2855)  
15kV ESD  
LTC2854, LTC2855 3.3V 20Mbps RS485 Transceivers with Integrated Switchable Termination  
LTC2856-1 Family 5V 20Mbps and Slew Rate Limited RS485 Transceivers  
LTC2859, LTC2861 5V 20Mbps RS485 Transceivers with Integrated Switchable Termination  
15kV ESD  
LTC1535  
LTM2881  
Isolated RS485 Transceiver  
Complete 3.3V Isolated RS485/RS422 ꢀModule® Transceiver + Power  
2500V  
Isolation, Requires External Transceiver  
RMS  
2500V  
Isolation with Integrated Isolated DC/DC  
RMS  
Converter, 1W Power, Low EMI, 15kV ESD, 30kV/μs  
Common Mode Transient Immunity  
2862345f  
LT 1211 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2862IDD-1#PBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2862IDD-2#PBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2862IS8-1#TRPBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2862IS8-2#PBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2862IS8-2#TRPBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2862_15

60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers
Linear

LTC2863

Complete Isolated RS485/RS422 μModule
Linear

LTC2863HDD-1#PBF

暂无描述
Linear

LTC2863HS8-1#PBF

LTC2863 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2863IDD-1#PBF

LTC2863 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2863IS8-1#PBF

LTC2863 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2863IS8-2#PBF

LTC2863 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear